Monday, 13 November 2017

Media Valori Moving Excel


Media mobile Questo esempio vi insegna come calcolare la media mobile di una serie storica in Excel. Una media mobile viene utilizzata per appianare le irregolarità (picchi e valli) di riconoscere facilmente le tendenze. 1. In primo luogo, consente di dare un'occhiata alla nostra serie temporali. 2. Nella scheda dati fare clic su Analisi dati. Nota: non riesci a trovare il pulsante Data Analysis Clicca qui per caricare il componente aggiuntivo Strumenti di analisi. 3. Selezionare media mobile e fare clic su OK. 4. Fare clic nella casella intervallo di input e selezionare l'intervallo B2: M2. 5. Fare clic nella casella Intervallo e digitare 6. 6. Fare clic nella casella Intervallo di output e selezionare cella B3. 8. Tracciare la curva di questi valori. Spiegazione: perché abbiamo impostato l'intervallo di 6, la media mobile è la media degli ultimi 5 punti di dati e il punto di dati corrente. Come risultato, i picchi e le valli si distendono. Il grafico mostra una tendenza all'aumento. Excel non può calcolare la media mobile per i primi 5 punti di dati, perché non ci sono abbastanza punti dati precedenti. 9. Ripetere i passaggi 2-8 per l'intervallo 2 e l'intervallo 4. Conclusione: Il più grande l'intervallo, più i picchi e le valli si distendono. Minore è l'intervallo, più le medie mobili sono i dati effettivi points. Moving Introduzione media Previsione. Come si può immaginare che stiamo guardando alcuni degli approcci più primitive di previsione. Ma si spera che questi sono almeno un'introduzione utile per alcuni dei problemi informatici relativi all'attuazione previsioni nei fogli di calcolo. In questo filone si continuerà avviando all'inizio e iniziare a lavorare con Moving previsioni medie. Spostamento previsioni medie. Tutti conoscono lo spostamento previsioni medie indipendentemente dal fatto che credono di essere. Tutti gli studenti universitari fanno loro tutto il tempo. Pensa ai tuoi punteggi dei test in un corso dove si sta andando ad avere quattro prove durante il semestre. Consente di assumere hai un 85 sul vostro primo test. Che cosa prevedere per il secondo punteggio test Cosa pensi che la tua insegnante di prevedere per il prossimo punteggio test Cosa pensi che i tuoi amici potrebbero prevedere per il prossimo punteggio test Cosa pensi che i tuoi genitori potrebbero prevedere per il prossimo punteggio del test Indipendentemente tutto il blabbing si potrebbe fare ai tuoi amici e genitori, e il vostro insegnante è molto probabile che si aspettano di ottenere qualcosa nella zona del 85 che avete appena ottenuto. Bene, ora lascia supporre che, nonostante la vostra auto-promozione per i tuoi amici, ti sopravvalutare se stessi e capire che si può studiare meno per la seconda prova e così si ottiene un 73. Ora, che sono tutti di interessati e indifferente andare a anticipare avrete sulla vostra terza prova ci sono due approcci molto probabili per loro di sviluppare una stima indipendentemente dal fatto che condivideranno con voi. Essi possono dire a se stessi, quotThis ragazzo è sempre soffia il fumo delle sue intelligenza. Hes andando ad ottenere un altro 73 se hes fortuna. Forse i genitori cercano di essere più solidali e dire, quotWell, finora youve acquistasti un 85 e un 73, quindi forse si dovrebbe capire su come ottenere circa una (85 73) 2 79. Non so, forse se l'avete fatto meno festa e werent scodinzolante la donnola tutto il luogo e se hai iniziato a fare molto di più lo studio si potrebbe ottenere una maggiore score. quot Entrambe queste stime sono in realtà in movimento le previsioni medie. Il primo sta usando solo il tuo punteggio più recente di prevedere le prestazioni future. Questo si chiama una previsione media mobile utilizzando uno periodo di dati. Il secondo è anche una previsione media mobile ma utilizzando due periodi di dati. Lascia supporre che tutte queste persone busting sulla vostra grande mente hanno sorta di voi incazzato e si decide di fare bene sulla terza prova per le proprie ragioni e di mettere un punteggio più alto di fronte al vostro quotalliesquot. Si prende il test e il punteggio è in realtà un 89 Tutti, compreso te stesso, è impressionato. Così ora avete la prova finale del semestre in arrivo e come al solito si sente il bisogno di pungolare tutti a fare le loro previsioni su come youll fare l'ultimo test. Beh, speriamo che si vede il motivo. Ora, si spera si può vedere il modello. Quale credi sia la più accurata Whistle mentre lavoriamo. Ora torniamo alla nostra nuova impresa di pulizie ha iniziato dal sorellastra estraniato chiamato Whistle mentre lavoriamo. Hai alcuni dati di vendita del passato rappresentata dalla sezione seguente da un foglio di calcolo. Per prima cosa presentiamo i dati per un periodo di tre movimento previsione media. La voce per cella C6 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C7-C11. Si noti come le mosse medi durante il più recente dei dati storici, ma utilizza esattamente i tre periodi più recenti disponibili per ogni previsione. Si dovrebbe anche notare che noi non veramente bisogno di fare le previsioni per i periodi precedenti al fine di sviluppare la nostra più recente previsione. Questo è sicuramente diverso dal modello di livellamento esponenziale. Ive ha incluso il predictionsquot quotpast perché li useremo nella pagina web successiva per misurare la previsione di validità. Ora voglio presentare i risultati analoghi per un periodo di movimento previsione media di due. La voce per cella C5 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C6-C11. Notate come ora solo i due più recenti pezzi di dati storici sono utilizzati per ogni previsione. Ancora una volta ho incluso il predictionsquot quotpast a scopo illustrativo e per un uso successivo nella convalida del tempo. Alcune altre cose che sono importanti per notare. Per un periodo di m-movimento previsione media solo il m valori dei dati più recenti sono usati per fare la previsione. Nient'altro è necessario. Per un periodo di m-movimento previsione media, quando si effettua predictionsquot quotpast, si noti che la prima previsione si verifica nel periodo m 1. Entrambi questi aspetti sarà molto significativo quando sviluppiamo il nostro codice. Sviluppare il Moving Average funzione. Ora abbiamo bisogno di sviluppare il codice per la previsione media mobile che può essere utilizzato in modo più flessibile. Il codice segue. Si noti che gli ingressi sono per il numero di periodi che si desidera utilizzare nella previsione e la matrice dei valori storici. È possibile memorizzare in qualsiasi cartella di lavoro che si desidera. Media mobile Funzione (storici, NumberOfPeriods) As Single Dichiarazione e inizializzazione delle variabili ARTICOLO Dim come variante Dim contatore come Integer Dim accumulo As Single Dim HistoricalSize come numero intero inizializzazione delle variabili contatore 1 Accumulo 0 Determinazione della dimensione della matrice storica HistoricalSize Historical. Count per il contatore 1 Per NumberOfPeriods accumulare il numero appropriato di più recenti valori precedentemente osservati accumulo accumulazione storica (HistoricalSize - NumberOfPeriods Counter) media mobile accumulo NumberOfPeriods il codice verrà spiegato in classe. Si desidera posizionare la funzione sopra il foglio in modo che il risultato del calcolo appare dove dovrebbe avere la following. DAX include alcune funzioni di aggregazione statistici quali media, varianza e deviazione standard. Altri calcoli statistici tipici richiedono di scrivere più espressioni DAX. Excel, da questo punto di vista, ha un linguaggio molto più ricca. I modelli statistici sono un insieme di calcoli statistici comuni: mediana, moda, media mobile, percentile, e quartile. Vorremmo ringraziare Colin Banfield, Gerard Brueckl, e Javier Guilln, il cui blog ispirato alcuni dei seguenti modelli. Di base del modello Esempio Le formule di questo modello sono le soluzioni ai calcoli statistici specifici. È possibile utilizzare le funzioni standard DAX per calcolare la (media aritmetica) media di un insieme di valori. MEDIA. restituisce la media di tutti i numeri in una colonna numerica. MEDIA. VALORI. restituisce la media di tutti i numeri in una colonna, la manipolazione di testo e valori non numerici (conta valori di testo non numerici e vuoti come 0). AVERAGEX. calcolare la media su un'espressione valutata su un tavolo. Media mobile La media mobile è un calcolo per analizzare i punti di dati con la creazione di una serie di medie di diversi sottoinsiemi di set di dati completo. È possibile utilizzare molte tecniche DAX per implementare questo calcolo. La tecnica più semplice utilizza AVERAGEX, iterando una tabella della granularità desiderato e calcolando per ogni iterazione l'espressione che genera il punto dati singolo da utilizzare nella media. Ad esempio, la seguente formula calcola la media mobile degli ultimi 7 giorni, partendo dal presupposto che si sta utilizzando una tabella data nel vostro modello di dati. Utilizzando AVERAGEX, si calcola automaticamente la misura ad ogni livello di granularità. Quando si utilizza una misura che può essere aggregate (ad esempio SUM), poi un altro approachbased su CALCULATEmay essere più veloce. È possibile trovare questo approccio alternativo nel modello completo di media mobile. È possibile utilizzare le funzioni standard DAX per calcolare la varianza di un insieme di valori. VAR. S. restituisce la varianza dei valori in una colonna che rappresenta un campione di popolazione. VAR. P. restituisce la varianza dei valori in una colonna che rappresenta l'intera popolazione. VARX. S. restituisce la varianza di un'espressione valutata su una tabella che rappresenta un campione di popolazione. VARX. P. restituisce la varianza di un'espressione valutata su una tabella che rappresenta l'intera popolazione. Deviazione standard, è possibile utilizzare le funzioni standard DAX per calcolare la deviazione standard di un insieme di valori. STDEV. S. restituisce la deviazione standard dei valori in una colonna che rappresenta un campione di popolazione. STDEV. P. restituisce la deviazione standard dei valori in una colonna che rappresenta l'intera popolazione. STDEVX. S. restituisce la deviazione standard di un'espressione valutata su una tabella che rappresenta un campione di popolazione. STDEVX. P. restituisce la deviazione standard di un'espressione valutata su una tabella che rappresenta l'intera popolazione. La mediana è il valore numerico che separa la metà superiore di una popolazione dalla metà inferiore. Se vi è un numero dispari di righe, la mediana è il valore centrale (ordinamento delle righe dal valore minimo al valore massimo). Se vi è un numero di righe, è la media dei due valori medi. La formula ignora i valori vuoti, che non sono considerati parte della popolazione. Il risultato è identica alla funzione mediano Excel. La figura 1 mostra un confronto tra il risultato restituito da Excel e la formula DAX corrispondente per il calcolo della mediana. Figura 1 Esempio di calcolo in Excel mediana e DAX. La modalità è il valore visualizzato più spesso in un insieme di dati. La formula ignora i valori vuoti, che non sono considerati parte della popolazione. Il risultato è identico alle funzioni MODE e MODE. SNGL in Excel, che restituiscono solo il valore minimo quando ci sono più modi nel set di valori considerati. La funzione MODE. MULT Excel restituirebbe tutti i modi, ma non è possibile implementarlo come una misura in DAX. Figura 2 confronta il risultato restituito da Excel con il corrispondente formula DAX per il calcolo modalità. Figura 2 Esempio di calcolo modalità in Excel e DAX. Percentile Il percentile è il valore sotto al quale una data percentuale di valori in un gruppo scende. La formula ignora i valori vuoti, che non sono considerati parte della popolazione. Il calcolo in DAX richiede diversi passaggi, descritti nella sezione modello completo, che mostra come ottenere gli stessi risultati delle funzioni di Excel PERCENTILE, PERCENTILE. INC, e PERCENTILE. EXC. I quartili sono tre punti che dividono un insieme di valori in quattro gruppi uguali, ogni gruppo comprendente un quarto dei dati. È possibile calcolare i quartili utilizzando il modello percentile, a seguito di queste corrispondenze: Primo quartile inferiore quartile 25 ° percentile secondo quartile mediana 50 ° percentile terzo quartile superiore quartile 75 ° percentile modello completo Pochi calcoli statistici hanno una descrizione più lunga del modello completo, perché si potrebbe avere diverse implementazioni a seconda dei modelli di dati e altri requisiti. Media mobile Di solito si valuta la media mobile facendo riferimento al livello di granularità giorno. Il modello generale della seguente formula ha questi marcatori: ltnumberofdaysgt è il numero di giorni per la media mobile. ltdatecolumngt è la colonna della data della tabella data, se ne avete uno, o la colonna data della tabella contenente i valori se non vi è alcuna tabella data separata. ltmeasuregt è la misura per calcolare la media mobile. Il modello più semplice utilizza la funzione AVERAGEX in DAX, che considera automaticamente solo i giorni per i quali esiste un valore. In alternativa, è possibile utilizzare il seguente modello in modelli di dati senza una tabella data e con una misura che può essere aggregato (come SUM) per tutto il periodo considerato. La formula precedente considera un giorno con dati corrispondenti come una misura che ha valore 0. Questo può accadere solo quando si dispone di una tabella data separato, che potrebbe contenere giorni per i quali non ci sono transazioni corrispondenti. È possibile risolvere il denominatore per la media utilizzando solo il numero di giorni per i quali ci sono transazioni utilizzando il seguente schema, in cui: ltfacttablegt è la tabella relativa alla tabella di data e valori contenenti calcolato dal provvedimento. È possibile utilizzare le funzioni DATESBETWEEN o DATESINPERIOD invece di filtro, ma questi funzionano solo in una tabella appuntamento fisso, mentre è possibile applicare il modello sopra descritto anche alle tabelle di data non regolari e di modelli che non hanno una tabella data. Ad esempio, considerare i diversi risultati prodotti dai seguenti due misure. Nella Figura 3, si può vedere che non ci sono vendite su 11 settembre 2005. Tuttavia, questa data è incluso nella tabella data così, ci sono 7 giorni (dal 11 settembre al 17 settembre) che hanno solo 6 giorni con i dati. Figura 3 Esempio di calcolo di Moving Average considerando e ignorando le date con nessuna vendita. La misura media mobile 7 giorni ha un numero minore tra 11 settembre e il 17 settembre, in quanto considera dell'11 settembre come un giorno con 0 vendite. Se si desidera ignorare giorni con nessuna vendita, quindi utilizzare la misura media mobile 7 giorni nessuna Zero. Questo potrebbe essere il giusto approccio quando si dispone di una tabella data completa, ma si desidera ignorare giorni con nessuna transazione. Utilizzando la media mobile 7 Giorni formula, il risultato è corretto perché AVERAGEX considera automaticamente solo i valori non vuoti. Tenete a mente che si potrebbe migliorare le prestazioni di una media mobile persistendo il valore in una colonna calcolata di un tavolo con la granularità desiderato, come ad esempio la data, o la data e il prodotto. Tuttavia, il metodo di calcolo dinamico con una misura offre la possibilità di utilizzare un parametro per il numero di giorni di media mobile (ad esempio, sostituire ltnumberofdaysgt con una misura di applicazione del modello Tabella Parametri). La mediana corrisponde al 50 ° percentile, che si può calcolare utilizzando il modello percentile. Tuttavia, il modello mediana consente di ottimizzare e semplificare il calcolo mediana utilizzando una singola misura, al posto delle diverse misure previste dal modello percentile. È possibile utilizzare questo approccio quando si calcola la mediana dei valori inclusi nel ltvaluecolumngt, come illustrato di seguito: Per migliorare le prestazioni, si potrebbe voler persistere il valore di una misura in una colonna calcolata, se si vuole ottenere il mediano per i risultati di una misura nel modello di dati. Tuttavia, prima di fare questa ottimizzazione, è necessario implementare il calcolo MedianX basato sul seguente modello, utilizzando questi marcatori: ltgranularitytablegt è la tabella che definisce la granularità del calcolo. Ad esempio, potrebbe essere la tabella di Data se si desidera calcolare la mediana di una misura calcolata a livello di giorno, o potrebbe essere VALORI (8216DateYearMonth) se si desidera calcolare la mediana di una misura calcolata a livello di mese. ltmeasuregt è la misura di calcolare per ogni riga ltgranularitytablegt per il calcolo mediana. ltmeasuretablegt è la tabella che contiene i dati utilizzati da ltmeasuregt. Ad esempio, se il ltgranularitytablegt è una dimensione come 8216Date8217, allora il ltmeasuretablegt sarà 8216Internet Sales8217 contenente la colonna Importo Internet Sales sintetizzato dalla misura totale di Internet Sales. Ad esempio, è possibile scrivere la mediana di Internet totale vendite per tutti i clienti di Adventure Works come segue: Punta il seguente schema: viene utilizzato per rimuovere le righe da ltgranularitytablegt che non hanno dati corrispondenti nella selezione corrente. Si tratta di un modo più veloce rispetto all'utilizzo la seguente espressione: Tuttavia, si potrebbe sostituire l'intera espressione CALCULATETABLE con appena ltgranularitytablegt se si vuole considerare valori vuoti della ltmeasuregt come 0. Le prestazioni della formula MedianX dipende dal numero di righe nel tavolo iterato e sulla complessità della misura. Se le prestazioni è male, si potrebbe persistere il risultato ltmeasuregt in una colonna calcolata del lttablegt, ma questo verrà rimosso la capacità di applicare filtri per il calcolo mediana in fase di query. Percentile Excel dispone di due diverse implementazioni di calcolo del percentile con tre funzioni: PERCENTILE, PERCENTILE. INC, e PERCENTILE. EXC. Tutti restituiscono il percentile K-esimo di valori, dove K è compreso nell'intervallo da 0 a 1. La differenza è che PERCENTILE e PERCENTILE. INC considerare K come range inclusivo, mentre PERCENTILE. EXC considera l'intervallo K 0 a 1 esclusivo . Tutte queste funzioni e delle loro implementazioni DAX ricevere un valore percentile come parametro, che noi chiamiamo K. ltKgt valore percentile è nel range da 0 a 1. Le due implementazioni DAX di percentile richiedono alcune misure che sono simili, ma abbastanza diverso da richiedere due diversi set di formule. Le misure definite in ogni modello sono: KPerc. Il valore percentile corrisponde a ltKgt. PercPos. La posizione del percentile nel set ordinato di valori. ValueLow. Il valore al di sotto della posizione percentile. ValueHigh. Il valore sopra la posizione percentile. Percentile. Il calcolo finale del percentile. È necessario le misure ValueLow e ValueHigh nel caso in cui i PercPos contiene una parte decimale, perché poi si deve interpolare tra ValueLow e ValueHigh al fine di restituire il valore corretto percentile. La figura 4 mostra un esempio di calcoli effettuati con formule di Excel e Dax, utilizzando entrambi gli algoritmi di percentile (inclusivo ed esclusivo). Figura 4 calcoli percentili utilizzando formule di Excel e il calcolo DAX equivalente. Nelle sezioni seguenti, le formule percentili eseguire il calcolo su valori memorizzati in una colonna della tabella, DataValue, mentre le formule PercentileX eseguire il calcolo sui valori restituiti da una misura calcolata in un dato granularità. Percentile Inclusive percentile implementazione Inclusive è la seguente. implementazione Percentile Exclusive Il percentile Exclusive è il seguente. PercentileX Inclusive La PercentileX implementazione Inclusive si basa sul seguente modello, utilizzando questi marcatori: ltgranularitytablegt è la tabella che definisce la granularità del calcolo. Ad esempio, potrebbe essere la tabella di Data se si vuole calcolare il percentile di una misura a livello di giorno, o potrebbe essere VALORI (8216DateYearMonth) se si vuole calcolare il percentile di una misura a livello di mese. ltmeasuregt è la misura di calcolare per ogni fila di ltgranularitytablegt per il calcolo percentile. ltmeasuretablegt è la tabella che contiene i dati utilizzati da ltmeasuregt. Ad esempio, se il ltgranularitytablegt è una dimensione come 8216Date, 8217 allora il ltmeasuretablegt sarà 8216Sales8217 contenente la colonna Importo riassunta dalla misura somma totale. Ad esempio, è possibile scrivere la PercentileXInc di importo totale delle vendite per tutte le date nella tabella Data come segue: implementazione PercentileX Esclusivo The PercentileX Exclusive si basa sulla seguente modello, utilizzando gli stessi marcatori usati nella PercentileX Inclusive: Ad esempio, è in grado di scrivere il PercentileXExc del totale ammontare delle vendite per tutte le date nella tabella Data come segue: Inviami i prossimi modelli (newsletter). Deselezionare per scaricare gratuitamente il file. Pubblicato il 17 Marzo 2014

No comments:

Post a Comment